高中数学研究性学习的思考
[03-21 23:17:59] 来源:http://www.kuaixuela.com 高中数学新课改 阅读:9846次
概要:重现某一数学研究方法编制开放题。数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,做小科学家,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。5.以实际问题为背景,体现数学的应用价值编制开放题。在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。第19届国际数学教育心理会议的公开课问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。将数学开放题作为数学研究性学习的一种载体,首先必须有适合的问题,如何编制能够用于研究性学习的开放题,这是值得研究的。在研究性学习的教学实践中,有充满活力和创造力的学生的参与,必将促进对这一问题认识的深化和提高。 上一页 [1] [2] [3]
高中数学研究性学习的思考,http://www.kuaixuela.com4.为体现或重现某一数学研究方法编制开放题。数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,做小科学家,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。
5.以实际问题为背景,体现数学的应用价值编制开放题。在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。
以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。第19届国际数学教育心理会议的公开课问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。
将数学开放题作为数学研究性学习的一种载体,首先必须有适合的问题,如何编制能够用于研究性学习的开放题,这是值得研究的。在研究性学习的教学实践中,有充满活力和创造力的学生的参与,必将促进对这一问题认识的深化和提高。
标签:高中数学新课改,高中新课改大全,新课改心得体会,数学教学 - 高中数学 - 高中数学新课改